


Segmentation using Multispectral Adaptive Contours 

Final Report 

To U.S. Army Research Office 

On contract #DAAD-19-03-1-0237 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted by Wesley Snyder, Ph.D. 

Department of Electrical and Computer Engineering 

North Carolina State University 

February 29th, 2004. 



 
 
 

4

Table of Contents 
 
Introduction................................................................................................................................................ 6 
Contour evolution ...................................................................................................................................... 8 

Energy minimization; snakes ................................................................................................................. 8 
Curvature motion; level sets .................................................................................................................. 8 

Boundary (geometry) based active contours............................................................................................ 10 
Geometric active contour ..................................................................................................................... 10 
Geodesic active contour ....................................................................................................................... 16 

Color snakes..................................................................................................................................... 17 
Discussion ............................................................................................................................................ 21 

Statistics (region) based active contours .................................................................................................. 22 
Mumford-Shah segmentation model.................................................................................................... 22 

Level set method for Mumford-Shah model.................................................................................... 22 
Active contours without edges; Chan-Vese model............................................................................... 24 
Multi-phase active contours ................................................................................................................. 29 

Multi-phase Chan-Vese model ......................................................................................................... 29 
Multi-dimensional Gaussian fitting ..................................................................................................... 35 
Discussion ............................................................................................................................................ 38 

Prime contours ......................................................................................................................................... 39 
Conclusion and future works ................................................................................................................... 46 
References................................................................................................................................................ 48 
 



 
 
 

5

List of all participating personnel earned advanced degrees while employed on 
the project 
 
Cheolha Pedro Lee, PhD student supported on this project, anticipated graduation, Dec. 2004. 



 
 
 

6

Segmentation using Multispectral Adaptive Contours 

 

Introduction 
Vector-valued images provide data in a form of vector-pixels. Multi or hyperspectral images are 
particular cases of vector-valued images, which consist of a stack of two-dimensional images, each 
measured at different wavelength band. A simple case of multispectral images is a color image, 
consisting of red, green, and blue (RGB) channels. Hyperspectral images are another example, which 
often contain more than hundred bands. Multispectral images have been studied mainly in target 
detection and remote sensing scenarios. 
 
Active contours have been used for image segmentation since the first introduction of snakes by Kass et 
al. [11]. The basic idea is to evolve a contour C, subject to constraints from a given image I, in order to 
detect objects in the image. For instance, starting with a contour around the object to be detected, the 
contour moves towards its normal and has to stop on the boundary of the object. The evolution of the 
contour is obtained by minimizing an energy function with respect to C, and the minimizer is given by 
the boundary of the object. The classical approaches use the image gradient to locate the boundary of 
the object. In the problems of contour evolution, the level set method and the motion by mean curvature 
of Osher and Sethian [18] have been used extensively, because they allow for automatic topological 
changes. Moreover, the discretization of the problem is made on a fixed rectangular grid. Active 
contours provide segments in a form of closed curves (continuous boundaries), while local filtering 
based edge detectors, i.e. Canny [1] or Sobel operators, often provide discontinuous boundaries. 
However, active contours have a few disadvantages; (a) Active contours may converge to a local 
minimum instead of the global minimum if the initial contour is placed at an improper position. This 
problem makes it difficult to apply active contours in a complex image, particularly a textured image. 
This problem also increases the impact of noise. (b) The computational cost is higher than other 
segmentation methods. Since multispectral image processing has the same drawback, the application of 
active contours on vector-valued images is a difficult task. 
 
The intent of this research is to investigate the performance of active contours as an image segmentation 
tool for vector-valued images, particularly multispectral images. A review of published methods has 
been performed, along with numerical experiments. In this report, we divided active contours into two 



 
 
 

7

groups; (a) geometry- or boundary-based models and (b) statistics- or region-based models. Boundary-
based active contour models use the image gradient to stop the evolution of contours on the desired 
boundary. Two boundary-based active contour models are reviewed in this report; geometric active 
contours proposed by Caselles et al. [2] and by Malladi and Sethian [13, 14] and geodesic active 
contours proposed by Caselles et al. [3, 4, 22, 23]. Region-based active contour models use stochastic 
information of segments to stop the contour evolution on the desired boundary. Two region-based active 
contour models are reviewed in this report; one proposed by Chan and Vese [5, 6, 7, 8] and the other 
proposed by Rousson and Deriche [21]. 
 
Most active contour models applicable to vector-valued images [7, 22, 23, 25] evolve the contour based 
on the sum of energy terms calculated in each frame. Since hyperspectral images may have up to 
hundreds of bands, this accumulation process may average out important features if they are observable 
only in a limited number of bands. For instance, if a set of multispectral images of a car are taken at 
visible bands and infrared bands, the hot spot of an engine is observed only in infrared (IR) bands. 
Taking the sum of energy terms along the dimension of wavelength may remove the hot spot by 
smoothing effect. We did an experiment of extracting a stack of prime contours, which are evolved from 
a group of frames instead of the whole frames. This new strategy divides a given hyperspectral image 
into a group of multispectral images with lower number of bands, based on the correlation between 
frames. A set of active contours – the prime contours - are evolved from each of the multispectral 
images. Final segmentation is achieved from these prime contours. This approach makes it possible to 
avoid the undesirable smoothing effect in hyperspectral image segmentation. 
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Contour evolution 
Most active contours move towards their interior normal and stop on the boundary of the object. In most 
of active contours, the force to stop the contour is obtained by minimizing an energy function, and the 
force to move the contour is based on the mean curvature. In this section, we briefly discuss these two 
topics. 
 

Energy minimization; snakes 
Let a contour be normalized to have a length of one as 

 ( ) [ ] 2: 0,1C s → \ . (1) 

The classical snake method associates the evolution of a contour C with an energy function1 given by  

 
( ) ( ) ( ) ( )( )

( ) ( )

1 1 1
2 2

0 0 0

in ext

E C C s ds C s ds I C s ds

E C E C

α β λ′ ′′= + − ∇

= +

∫ ∫ ∫  (2) 

where α, β, λ are real positive constants [11]. The first two terms (internal energy) control the 
smoothness of the curve. The first-order term with α makes the snake acts like a membrane (i.e. resists 
stretching), while the second-order term with β makes the snake acts like a thin plate (i.e. resists 
bending). The third term (external energy) with λ attracts the contour towards the boundary of the object. 
By minimizing this energy function, we are trying to locate the contour at the points, which maximize 

|∇I|, acting as an edge-detector, while keeping a smoothness in the contour. 
 
Classical snakes have a few disadvantages; (a) they cannot detect more than one object because the 
contour cannot merge or break. (b) Since snakes make use of only local information, they may not find 
the boundary of the object if the initial position of the contour is too far from the object. 
 

Curvature motion; level sets 
Let a metric function be defined as 

 ( ) 2, , :x y tφ →\ \ . (3) 

                                                      
1 This energy function is simplified particularly for the image segmentation. We are interested in closed 
curves (contours) only. 
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The contour C can be represented implicitly via this metric function by 

 ( ) ( ) ( ){ }, : , , 0C s x y x y tφ≡ = , (4) 

and the evolution of the contour is given by the zero-level contour at time t of the function φ(x,y,t). A 
common way to initiate a level set function is a signed distance to the nearest pixel on the contour. The 
deformation of the contour is given by 

 
( ) ( )( )0

0

, , ,

F
t

x y D x y C

φ φ

φ

∂
+ ∇ =

∂
= ±

 (5) 

where F is the speed function of deformation and D(a, b) is the Euclidean distance between two pixels 
[18]. A common example of the speed function is 

 ( )F vκ εκ= +  (6) 

where v is a constant speed term to accelerate the motion of a contour, and ε controls the relative 
importance of the curvature motion. The unit normal vector2 and the mean curvature3 can be directly 
calculated from the level set function. 

 
φ
φ

∇
=
∇

n  (7) 

 

( )
2 2

3/ 22 2

div

2xx y x y xy yy x

x y

φκ
φ

φ φ φ φ φ φ φ

φ φ

⎛ ⎞∇
= ⎜ ⎟⎜ ⎟∇⎝ ⎠

− +
=

+

 (8) 

where φx and φ xx denote the first- and second-order partial derivatives of φ respect to x. 

 
The level set method has a few advantages over the classical snakes; (a) it allows for automatic 
topological changes, i.e. merging and breaking. (b) The discretization of the problem is made on a fixed 
rectangular grid. However, the computational cost is high because the dimension of the metric function 
to be updated is equal to the dimension of the image. 
 

                                                      
2 Some literature [14, 16] defined the unit normal as n = -∇φ/|∇φ| instead of ∇φ/|∇φ| depending on the 
direction the normal vector towards. 
3 In the case above, curvature is defined as κ = -∇⋅(∇φ/|∇φ|). 
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Boundary (geometry) based active contours 
Boundary-based active contour models use the image gradient to stop the contour evolution on the 
desired boundary. The stopping function can be defined as a positive and decreasing function, such as 

 ( )( ) ( )
1,

1 ,
g I x y

f x y
=

+
 (9) 

or 

 ( )( ) ( ),, f x yg I x y e−= , (10) 

depending on the image gradient 

 ( )( ) ( ) 2
, * ,f I x y G I x yσ= ∇  (11) 

where Gσ*I is a smoother version of I. The function g(I) is positive in homogeneous regions, and zero at 
the edges 

 
0 1

0
f g
f g
→ →⎧

⎨ →∞ →⎩
. (12) 

 

Geometric active contour 
Caselles et al. [2] and Malladi et al. [13, 14] proposed geometric active contour models based on the 
mean curvature motion given by 

 ( )( )g I v
t
φ κ φ∂
= + ∇

∂
. (13) 

where v is a positive constant pushing the contour towards the object. The zero level contour moves in 

the normal direction with speed g(I)(κ + v), and therefore stops on the desired boundary, where g(I) 
vanishes. 
 
Geometric active contours have a few disadvantages; (a) since the stopping function use the image 
gradient, boundary-based active contours make use of only local information like the classical snakes, 
and are sensitive to local minima and noise. (b) The initial contour should be placed at completely 
exterior or interior of the boundary of the object because the speed function is explicitly controlled by a 
constant v evolving the initial contour towards one direction. 
 
In Figure 1, we show how geometric active contours work in a synthetic gray image. Due to the level set 
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implementation, the model allows automatic change of topology. In Figure 2, we show how sensitive 
geometric active contours are to the initial condition and noise. An initial contour is placed at the 
exterior of the ellipse partially overlapping the triangle. The contour cannot detect the triangle because 
the initial contour is not located at the complete exterior of the triangle. Due to noise, the contour cannot 
stop on the boundary of the object. 
 

 

Figure 1 Geometric active contours applied into a synthetic gray image (256x256x1). (Left) An initial 

contour is placed at the exterior of all objects. (Middle) The contour splits and stops on the boundary of the 

objects.  (Right) The image is divided into two segments; objects and the background. 

 

 

Figure 2 Geometric active contours applied into a synthetic gray image (256x256x1) corrupted by noise. 

(Left) Initial contour is not placed at the complete exterior of all objects. (Middle, Right)  The contour 

cannot stop on the boundary of the object. 

 
Let us define a vector-valued image function as 
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 ( ) 2, : Mx y →I \ \  (14) 

with components 

 ( ) 2, :mI x y →\ \  (15) 

where m = 1, 2, …, M. An image function I at a given coordinate (x,y) is an M×1 vector. We can 
implement geometric active contour models into vector-valued images by using a modified version of 
the image gradient operator. Taking the average of the image gradient measured at each frame is an 
example and given by 

 ( ) 2*
M

m m
m

f I w G Iσ= ∇∑  (16) 

where wm is an element of a normalized weight vector to control the relative importance of frames. 
 
In Figure 3, three circles with different colors are placed in a synthetic RGB image (256x256x3). In 
Figure 4, we show how geometric active contours work on the image in Figure 3. The contour stops on 
the external boundary of the three circles after initilization at the exterior of the three circles. Since the 
segmentation relies on the deformation of a single contour, we cannot find more than two segments 
simultaneously. In Figure 5, we show how we can detect the internal boundary of an object. A contour is 
initiated at the interior of one circle, and moves outward. The contour stops growing on the internal 
boundary of the circle. 
 

 

Figure 3 Three circles are located in a synthetic RGB image (256x256x3). (Left) Red channel, (Middle) 

Green channel, (Right) Blue channel. 
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Figure 4 Geometric active contours applied into Figure 3 (256x256x3). (Left) The initial contour is placed at 

the exterior of three circles. (Middle) The contour stops on the external boundary of the three circles. 

(Right) The image is divided into two segments; three circles as one object and the background. 

 

 

Figure 5 Geometric active contours applied into Figure 3 (256x256x3), corrupted by noise. W=[1 2 1]T (Left) 

A contour is initiated at the interior of one circle. (Middle) The contour stops on the internal boundary of 

the object. (Right) The image is divided into two segments; a circle and the background. 

 
In Figure 6, a toy tank is placed in a homogeneous background. In Figure 7, the same tank is placed in a 
textured background. Both images were measured at the inside of a room with three channels (RGB). 
Figure 6 represents a simple real image, while Figure 7 represents a more complicated real image with a 
textured background. In Figure 8, we show how geometric active contours work on the image in Figure 
6. After initiating an initial contour at the exterior of the object, the contour stops at the boundary of the 
object providing a silhouette of the object. In Figure 9, we show how geometric active contours work on 
the image in Figure 7. Due to the textured background, the stopping function detects high gradient not 
only on the boundary of the object but also on the background. The texture of camouflage paint also 
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produces false edge pixels inside of the object. The contour keeps shrinking even after crossing the 
boundary of the object.  
 

 

Figure 6 A toy tank is placed in a homogeneous background in an RGB image (258x253x3). (Left) Red 

channel, (Middle) Green channel, (Right) Blue channel. 

 

 

Figure 7 A toy tank is placed in a textured background in an RGB image (258x253x3). (Left) Red channel, 

(Middle) Green channel, (Right) Blue channel. 

 
Initial Contours Deformed contour Final segmentation

 

Figure 8 Geometric active contours applied into Figure 6. (Left) An initial contour is placed at the exterior 

of the object. (Middle) The contour stops at the boundary of the object. (Right) The image is divided into 

two segments; the object and the background. 
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Initial Contours Deformed contour Final segmentation

 

Figure 9 Geometric active contours applied into Figure 7. (Left) The initial contour is placed at the exterior 

of the object. (Middle) (Right) The contour keeps shrinking even after crossing the boundary of the object. 
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Geodesic active contour 
The geodesic active contour model was proposed by Caselles et al. in [3, 4]. They considered a 

particular case of the snake energy function in equation (2), where β = 0 and image gradient replaced 
with a decreasing gradient function  

 
( ) ( ) ( )

( ) ( )

1 1
2

0 0

in ext

E C C s ds g I ds

E C E C

α λ′= +

= +

∫ ∫ . (17) 

Based on classical dynamical systems principles, minimizing this energy function in a certain allowed 
space of curves is equivalent to minimizing 

 ( )( )( )
( )

0

L C

RL g I C s dv= ∫ , (18) 

where dv is the Euclidean arc length [23]. Therefore, solving the active contour problem is equivalent to 
finding a path of minimal distance, where the distance is given by the modified arc length gdv. This path 
is called geodesic curve, and obtained by minimizing LR. The flow minimizing LR is given by 

 ( ) ( )C g I g
t

κ∂
= − ∇

∂
n n ni , (19) 

where κ is the mean curvature in equation (8) and n is the unit inward normal vector in equation (7). 
The complete geometric interpretation of this flow is discussed in [4, 22]. From the relation between a 
contour and a level set function defined in equation (4) and the level set formulation of the steepest 
descent method, solving this geodesic problem is equivalent to searching for the steady state of the 
evolution equation 

 
( )

( ) ( )

div g I
t

g I g I

φ φ φ
φ

κ φ φ

⎛ ⎞∂ ∇
= ∇⎜ ⎟⎜ ⎟∂ ∇⎝ ⎠
= ∇ +∇ ∇i

. (20) 

In order to increase the convergence speed, we can add a positive constant term v into the evolution 
equation 

 
( ) ( )

( )( ) ( )

div g I vg I
t

g I v g I

φ φ φ φ
φ

κ φ φ

⎛ ⎞∂ ∇
= ∇ + ∇⎜ ⎟⎜ ⎟∂ ∇⎝ ⎠
= + ∇ +∇ ∇i

. (21) 
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This is the formulation of geodesic active contour. The role of v is to increase the convergence speed by 
minimizing the enclosed area [9]. We can notice the geodesic active contour model is identical to the 

geometric active contour model in equation (13) except for ∇g⋅∇φ. 
 
In Figure 10, we show how geodesic active contours work on the same image that we used for the 
geometric active contours in Figure 1. As the initiated contour moves towards the boundary of objects, a 
set of contours automatically appear from the opposite side (inside for this case) and then move towards 
the boundary of objects. These dual active contours help the initiated contour not to across the weak 
edge pixels. The image is divided into two segments, the boundary of objects and the background. 
 

 

Figure 10 Geodesic active contours applied into a synthetic gray image (256x256x1). (Left) A contour is 

initiated at the exterior of all objects. (Middle) As the contour shrinks, a set of contours appear from the 

inside of objects and move towards the boundary of objects.  (Right) The image is divided into two 

segments; the boundary of objects and the background.  

 

Color snakes 
Color snakes, a particular case of geodesic active contours on vector-valued images were proposed by 
Sapiro [22, 23]. He defined the edges in vector-valued images based on classical Riemannian geometry. 
The difference of an image function at two points P and Q is given by 

 ( ) ( )I I P I Q∆ = − . (22) 

When the Euclidian distance between the two points d(P, Q) tends to zero, the difference ∆I becomes 
the arc length element 

 
I IdI dx dy
x y
∂ ∂

= +
∂ ∂

. (23) 
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Its squared norm is called the first fundamental form [12] and given by 

 11 122

21 22

T g gdx dx
dI

g gdy dy
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (24) 

using the notation of Riemanian geometry where 

 

12 21
1

2

11
1

2

22
1

M
m m

m

M
m

m

M
m

m

I II Ig g
x y x y

II Ig
x x x

II Ig
y y y

=

=

=

⎧ ∂ ∂∂ ∂
= = =⎪

∂ ∂ ∂ ∂⎪
⎪ ∂∂ ∂⎪ ⎛ ⎞= =⎨ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎪
⎪ ⎛ ⎞∂∂ ∂⎪ = = ⎜ ⎟⎪ ∂ ∂ ∂⎝ ⎠⎩

∑

∑

∑

i

i

i

. (25) 

The extrema of this quadratic form are obtained in the directions of the eigenvectors of the metric tensor 
[gij], and the values of the extrema are the corresponding eigenvalues given by 

 
( )2 2

11 22 11 22 124
2

g g g g g
λ±

+ ± − +
= . (26) 

The eigenvector provides the direction of maximal and minimal changes at a given point in the image, 

and the two eigenvalues are the corresponding rates of changes, respectively λ+ and λ-. In single frame 
images, λ+ = |∇I|2 and λ- = 0. The strength of edges in vector-valued images is a function of two 
eigenvalues λ+ and λ- rather than just the maximal rate of changes. A common choice of the edge 
function is 

 ( ) ( )2 2
11 22 12, 4f x y g g gλ λ+ −= − = − + . (27) 

Geodesic active contour model (21) with this particular color gradient operator constitutes the color 
snakes model. 
 
In Figure 11, we show how color snakes work on the same synthetic RGB image (256x256x3), 
corrupted by noise this time, we used to evaluate geometric active contours in Figure 5. Compared to 
geometric active contours, we can notice that color snakes can detect weaker edge pixels, but are 
sensitive to noise. 
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Figure 11 Color snakes applied into the RGB image in Figure 3 (256x256x3), corrupted by noise. (Left) A 

contour is initiated at the exterior of the three circles. (Middle) (Right) Color snakes find the boundary of 

three circles as well as many false segments. 

 
In Figure 12 and Figure 13, we show how color snakes work on the same real RGB images we used to 
evaluate geometric active contours in Figure 8 and Figure 9. Color snakes find the many internal 
boundaries because of camouflage paint in both Figure 12 and Figure 13. Color snakes produces many 
false segments because of the textured background in Figure 13. 
 

Initial Contours Deformed contour Final segmentation

 

Figure 12 Color snakes applied into the RGB image in Figure 6 (258x253x3). (Left) A contour is initiated at 

the exterior of the object. (Middle) (Right) Color snakes find many internal boundaries because of 

camouflage paint. 
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Initial Contours Final segmentation

 

Figure 13 Color snakes applied into the RGB image in Figure 7 (258x253x3). (Left) A contour is initiated at 

the exterior of the object. (Middle) (Right) Color snakes produces many false segments and internal 

boundaries because of the textured background and camouflage paint. 
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Discussion 
We have implemented two boundary-based active contour models; geometric active contours and 
geodesic active contours. Color snakes are a particular case of geodesic active contours for vector-
valued images. 
 
After numerical experiments, we found a few problems of the boundary-based active contour models. 
(a) Due to the structure of the speed function, boundary-based active contour models evolve the contour 
towards one direction. Therefore, an initial contour should be placed at completely exterior or interior of 
the boundary of the object. (b) Due to the image gradient operator, boundary-based active contour 
models may produce false segments in noisy or textured images. (c) Boundary-based active contour 
models cannot detect more than two segments simultaneously as they rely on single deformable contour. 
In Figure 4, all circles are classified into one object though each circle has different properties (color). 
 
The sensitivity to initial condition and noise can be improved by a different approach of active contours 
- region-based active contour - which will be introduced in the next section. The problem of textured 
image can be solved by the texture based active contours, another form of active contours on vector-
valued images, particularly a stack of filter responses. The problem of multiple segments can be solved 
by multi-phase active contours. The multi-phase active contours will be discussed after the region-based 
active contours in this report. 
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Statistics (region) based active contours 
Statistics- or region-based active contour methods move contours using forces estimated from stochastic 
information, i.e. mean, variance, of each region instead of geometrical boundaries. An objective 
function is minimized by looking for the stochastic information, which characterizes the corresponding 
region, and the objective function acts as the stopping function without the image gradient. Two region-
based active contour models, one proposed by Chan and Vese [5, 6, 7, 8, 17, 25], and the other proposed 
by Rousson and Deriche [17, 20, 21], will be discussed in this section. 
 

Mumford-Shah segmentation model 
Let us consider both an image as a set, 

 2Ω⊂ \  (28) 
which consists of finite number of subsets, and let a contour C be a closed subset (a contour) in Ω made 
up of a finite set of curves. The connected components of Ω\C are defined as Ωi, such that 

 i
i

C⎛ ⎞
Ω = Ω⎜ ⎟

⎝ ⎠
∪∪ . (29) 

We define |C| as the total length of a curve C and I0(x,y) as a given image function. In [15], Mumford 

and Shah defined the segmentation problem as follows: find a decomposition Ωi of Ω and an optimal 
piecewise smooth approximation I(x,y) of the given image I0(x,y), such that I(x,y) varies smoothly 

within each Ωi, and discontinuously across the boundaries of Ωi. They also proposed the following 
energy function4 

 ( ) ( ) 22
0 \

,MS

C
F I C I I dxdy I dxdy v Cµ

Ω Ω
= − + ∇ +∫ ∫  (30) 

where µ, v are positive constants to weight different terms in the energy. I(x,y) is the minimizer of the 
above energy and an optimal piecewise smooth approximation of the initial, possibly noisy, image I0 
(x,y). C has the role of approximating the edges of I0(x,y);  I(x,y) will be smooth only the outside of C, 

i.e. Ω\C. 
 

Level set method for Mumford-Shah model 
Let us define the given curve C as the boundary of an open set ω  
 ,  C ω ω= ∂ ∈Ω , (31) 

                                                      
4 We change the notation of the given image function I(x,y) in order to follow the notation in references. 
Note I(x,y) is approximated at each iteration (time varying), while I0(x,y) is measured at only the first 
time (fixed). The I0(x,y) denotes the I(x,y) introduced in previous sections. 
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and as a zero level set of a continuous function φ(x,y) [25]. 

 
( ) ( )
( ) ( )
( ) ( )

, 0 ,
, 0 ,
, 0 , \

x y x y
x y x y
x y x y

φ ω
φ ω
φ ω

> ∈⎧
⎪ = ∈∂⎨
⎪ < ∈Ω⎩

 (32) 

A common way to define a level set function φ(x,y) is the signed distance to the curve C. In [10], Evans 
and Gariepy expressed the length of the curve C and the area of a set ω using Heaviside function  

 ( )C H φ
Ω

= ∇∫  (33) 

 ( )H dxdyω φ
Ω

= ∫  (34) 

where Heaviside function is a unit step function given by 

 ( )
1, 0
0, 0

z
H z

z
≥⎧

= ⎨ <⎩
. (35) 

Since the unit step function is not differentiable, a regularized form of Heaviside function is given by 

 ( ) 1 21 arctan
2

zH zε π ε
⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (36) 

The boundary of Heaviside function is a Dirac delta function approximated by 

 ( ) ( ) 2 2

1dz H z
dz zε

εδ
π ε

= =
+

. (37) 

The associated Euler-Lagrange equation obtained by minimizing the length of curve in equation (33)

with respect to φ is given by [25] 

 
( )

( )

div
t ε

ε

φ φδ φ
φ

δ φ κ

⎛ ⎞∂ ∇
= ⎜ ⎟⎜ ⎟∂ ∇⎝ ⎠
=

. (38) 

The curve evolution motivated by the above equation can be interpreted as the motion by mean 
curvature minimizing the length of the curve. 
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Active contours without edges; Chan-Vese model5 
A reduced case of the Mumford-Shah energy function is obtained by restricting the segmented image 

I(x,y) to a function, constant inside each connected component Ωi, i.e. I(x,y) = ci. The simplified energy 
function is given by 

 ( ) ( )2,
i

MS
i

i
E I C I c dxdy v C

Ω
= − +∑∫ . (39) 

Assuming C is fixed, the above energy is minimized by setting 

 ( )( ) ( )0 , ,  ,i ic mean I x y x y= ∈Ω . (40) 

Chan and Vese proposed an active contour model using this Mumford-Shah piecewise constant model 
[7], which does not need an edge function. They proposed to minimize the following energy function 
with respect to c1, c2, and C. 

 ( ) ( )( ) ( )( )2 2
2 1 2 0 1 0 2\

, , , ,F c c C I x y c dxdy I x y c dxdy v C
ω ωΩ

= − + − +∫ ∫  (41) 

The above energy function can be rewritten using the level set formulation and Heaviside function as 
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φ φ
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+ − −

+ ∇

∫
∫
∫

. (42) 

The minimum of this energy function can be obtained by the evolution equation 

 ( ) ( ) ( ){ }2 2
0 1 0 2divv I c I c

t ε
φ φδ φ

φ

⎡ ⎤⎛ ⎞∂ ∇
= − − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∇⎢ ⎥⎝ ⎠⎣ ⎦

 (43) 

where 
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 (44) 

                                                      
5 Although the actual title of the paper written by Chan and Vese is ‘Active Contours without Edges’, 
there are other active contour models which do not use an edge function. Thus, we will call this model 
as ‘Chan-Vese model’ following the names of the authors. 
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I x y H x y dxdy
c

H x y dxdy
ε
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φ

φ
Ω

Ω

−
=

−
∫
∫

. (45) 

This model performs active contours looking for a 2-phase segmented image, given by 

 ( ) ( )( ) ( )( ){ }1 2, , 1 ,I x y c H x y c H x yφ φ= + − . (46) 

The main advantages of this active contour model compared to other active contour models are; (a) It 
automatically detects interior contours, so we can place a random number of initial contours in random 
places in the image. There are two advantages of this distributed seed initialization. First, we do not 
need prior knowledge of the possible location of the object. Second, the convergence speed increases as 
the number of initial contours increases. (b) Since this active contour model does not need an edge 
function, objects without edge lines can be detected. (c) Multiple contours can be evolved 
simultaneously providing multiple segments. 
 
In Figure 14, we show how Chan-Vese model works on the same synthetic gray image (256x256x1) 
used to evaluate other models. 36 small initial contours were placed at random places in the image. 
Compared to other active contour models, Chan-Vese model is robust respect to noise. 
 

Initial Contours Final segmentation

 

Figure 14 Chan-Vese model applied into a synthetic gray image (256x256x1) corrupted by noise. (Left) 36 

small initial contours are placed using distributed seeds in the image. (Middle) (Right) The image is divided 

into two segments; objects and the background. 

 
Figure 15 is a long wavelength infrared (LWIR) image measured outside. This LWIR image has low 
resolution and contrast. A toy truck was placed on grassland during a sunny day. The cargo bed of the 
truck is made of steel, while other parts of the truck are made of plastic. In Figure 16, we show the result 
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of Chan-Vese model applied into Figure 15. 36 initial contours are placed using distributed seeds. Active 
contours produce a few false segments because of the textured background. 
 

 

Figure 15 An outdoor LWIR image (256x256x1) 6. A toy truck, mainly consisting of plastic parts and metal 

parts, is placed on grassland. 

 
Initial Contours Final segmentation

 

Figure 16 Chan-Vese model applied into Figure 15. (Left) 36 initial contours are placed using distributed 

seeds. (Middle) (Right) A few false segments are produced because of the texture of grass. The image is 

divided into two segments; object and the background. 

 
In [7], Chan et al. proposed the extension of their active contour model to vector-valued images. Their 
model takes an average of energy functions measured at each frame. The energy function and evolution 
equation for vector-valued images are given by 

                                                      
6 The contrast of this image is enhanced to visualize the shape of the object. 
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 ( ) ( ) ( ){ }2 2
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M

m m m m
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v I c I c
t ε
φ φδ φ

φ =

⎡ ⎤⎛ ⎞∂ ∇
= − − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∇⎢ ⎥⎝ ⎠⎣ ⎦

∑  (48) 

where m = 1, 2, …, M denotes the frame of a given image. w1m and w2m are positive constant elements of 
normalized weight vectors to control the relative importance of frames. The constant functions c1 and c2 
are vectors in this form. 
 
In Figure 17, we show the result of Chan-Vese model applied into the RGB image in Figure 6 
(258x253x3). 36 initial contours are placed using distributed seeds. In Figure 17, we can see more detail 
of the barrel of the tank than Figure 8, obtained by the geometric active contour model. In Figure 18 and 
Figure 19, we show the result of Chan-Vese model applied into the RGB image in Figure 7 (258x253x3). 
Active contours produce many false segments because of the textured background. In Figure 19, the 
number of false segments is reduced by placing one initial contour manually instead of distributed seeds.  
 

Initial Contours Final segmentation

 

Figure 17 Chan-Vese model applied into the RGB image in Figure 6 (258x253x3). (Left) 36 initial contours 

are placed using distributed seeds. (Middle) Active contours move towards the boundary of the object and 

the boundary of the image. (Right) The image is divided into two segments; the object and the background. 

 



 
 
 

28

Initial Contours Final segmentation

 

Figure 18 Chan-Vese model applied into the RGB image in Figure 7 (258x253x3). (Left) 36 initial contours 

are placed using distributed seeds. (Middle) (Right) Active contours produce many false segments because 

of the textured background. 
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Figure 19 Chan-Vese model applied into the RGB image in Figure 7 (258x253x3). (Left) One initial contour 

is placed manually. (Middle) (Right) Active contours produce fewer false segments than Figure 18. 
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Multi-phase active contours 
Multiple objects with different properties were given in Figure 4 and Figure 5, but we could detect only 
one object at a time because the segmentation was done by one active contour. Chan and Vese [5, 6, 17, 
25], Rousson and Deriche [17, 21], and Paragios [19] proposed multi-phase7 active contour models to 
detect multiple segments simultaneously. In multi-phase active contour models, we deform multiple 
contours simultaneously and take their combination, usually the union, to construct the final contour, 
which divides the image into more than two segments. The final contour can be given by 

 j
j

C C=∪  (49) 

where each Cj is a closed curve (contour). 
 

Multi-phase Chan-Vese model 
In [5, 6, 17, 25], Chan and Vese proposed an extension of the piecewise constant model into multi-phase 
segmentation. They defined N = 2J segments using J level set functions. With this definition, segments 

form a disjoint decomposition covering the domain Ω. There is no vacuum and overlap among segments, 
and we need only log2N level set functions to present N segments. Let us consider a vector level set 
function 

 ( ) ( ) ( ) ( )1 2, , , ,
T

Jx y x y x y x yφ φ φΦ = ⎡ ⎤⎣ ⎦"  (50) 

where J = log2N is the number of level set functions, and each level set function is defined as 

 :jφ Ω→\ . (51) 

The union of the zero level sets of φj represents the edges in the segmented image. Let us define a vector 
Heaviside function in the same way 

 ( ) ( ) ( ) ( )1 2
T

JH H H Hφ φ φΦ = ⎡ ⎤⎣ ⎦" . (52) 

Two pixels (x1, y1) and (x2, y2) belong to the same segment if and only if the corresponding Heaviside 
functions have the same value. 

                                                      
7 ‘Phase’ is used as an equivalent term to segment. Note ‘multi-phase active contours’ denotes active 
contours with more than two phases instead of one phase. Although this definition is confusing, we 
followed the notation in references. 
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 (53) 

The energy function of multi-phase Mumford-Shah piecewise-constant model can be rewritten from 2-
phase model in equation (41) to 

 ( ) ( )( )
( )2 1

2
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0
, ,

2
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N i i i
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vF C I x y c dxdyχ χ
= −

Ω
=
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∑ ∫c  (54) 

using a constant vector of averages 

 [ ]1 2
T

Nc c c=c " . (55) 

χi is the segment function denoting whether a given pixel belongs to the segment Ωi or not. The segment 
functions of 2-phase model (1 level set function) are given by8 

 0 1

1 1

1 H
H

χ
χ

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
, (56) 

and 4-phase model (2 level set functions) are given by 
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After replacing the length of contour with the sum of the length of zero level set 
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i j
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Ω
= =

∇ ⇒ ∇∑ ∑∫ , (58) 

the energy function is given by 

 ( ) ( )( )
1

0
0 1

, ,
N J

MS
N i i j

i j
F I x y c dxdy v Hχ

−

Ω Ω
= =

Φ = − + ∇∑ ∑∫ ∫c . (59) 

For a particular example, the energy function of 4-phase model is given by 

                                                      
8 Note we simplified the notation of Heaviside function. Hj ≡ Hj(x,y) = H(φj(x,y)) 
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 (60) 

where c = {c00, c01, c10, c11} is a constant vector in equation (55) and Φ = {φ1, φ2} is a level set vector in 
equation (50). The segmented image function I(x,y) for 4-phase model is given by 

 ( )( ) ( ) ( )00 1 2 01 1 2 10 1 2 11 1 21 1 1 1I c H H c H H c H H c H H= − − + − + − + . (61) 

Two evolution equations are obtained by minimizing the above energy function as 
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 (62) 

where the constant vector is estimated by 
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In [25], Vese proposed the extension of this model to vector-valued images as 

 ( ) ( )( )
1

0
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, ,
N M J

NM i i j
i m j

F I x y c dxdy v Hχ
−

Ω Ω
= = =
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In Figure 20 and Figure 21, we show the results of 4-phase Chan-Vese model applied into a synthetic 
RGB image (256x256x3) corrupted by noise in Figure 3. Four segments are defined by two level set 
functions. In Figure 20, two initial contours were placed manually, and the image is divided into four 
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segments classifying the three circles and the background separately. In Figure 21, 36x2=72 initial 
contours are placed using distributed seeds, and the image is divided into 3 segments misclassifying two 
circles as the same segment. From these experiments, we show that Chan-Vese model gives more 
options to place initial contours, but the segmentation result is still affected by the initial conditions. 
 

Initial Contours Deformed contour Final segmentation

 

Figure 20 4-phase (2 level set functions) Chan-Vese model applied into the synthetic RGB image in Figure 3 

(256x256x3), corrupted by noise. (Left) Two initial contours are placed manually. (Middle) (Right) The 

image is divided into 4 segments {circle 1, circle 2, circle 3, and the background}. 
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Initial Contours Deformed contour Final segmentation

 

Figure 21 4-phase (2 level set functions) Chan-Vese model applied into the synthetic RGB image in Figure 3 

(256x256x3), corrupted by noise. (Left) 36×2=72 initial contours are placed using distributed seeds. (Middle) 

(Right) The image is divided into 3 segments misclassifying two circles as the same segment. 

 
In Figure 22, we show a real multispectral image. A toy truck was placed on the grassland during a 
sunny day. Seven images were measured at different wavelengths using three different sensors. The first 
three images were measured by an RGB camera, and the next three images were measured by an MWIR 
camera between 3 ~ 5 µm, and the last image was measured by an LWIR camera between 8 ~ 12 µm. 
The last image shows the original version of Figure 15. The segmentation of this multispectral image is 
a difficult task because (a) the background contains complicated texture. (b) The object consists of small 
sub-parts, and each subpart show different properties. The cargo part is made of yellow steel, tire part is 
made of black plastic, and driving seat is made of plastic with multiple colors. (c) The shadow of the 
object makes the spectral distribution of pixels more varied. In Figure 23, we show the result of 4-phase 
Chan-Vese model applied into this image set. Two sets of initial contours are placed using distributed 
seeds. The segmentation result is not as simple as other cases. 
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Figure 22 A 7-band multispectral image {red, green, blue, 3~5µm, 3.3~5µm, 3~4.3µm, 8~12µm} (256x256x7). 

A toy truck, mainly consisting of plastic parts and a few metal parts, is placed on a grass field. 
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Figure 23 4-phase Chan-Vese model applied into the multispectral image in Figure 22 (7bands; 3 visible, 3 

MWIR, 1 LWIR). 
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Multi-dimensional Gaussian fitting 
In [17, 21], Rousson and Deriche proposed an active contour model using the maximization of the a 
posteriori segmentation probability. Let pi(I) be the conditional probability density function (PDF) of an 
image function value I with respect to the hypothesis hi. Rousson and Deriche defined a segmentation 
problem as solving the optimization problem with respect to the a posteriori segmentation probability, 

given the observation set p(ω(Ω)|I), where ω is a segment of a domain Ω. With two assumptions, (a) all 
segments are equally possible, (b) the pixels within each region are independent; the optimal frame 
segment is obtained by minimizing the following energy. 

 ( ) ( )( )
1

log ,
i

N

i
i

F C p I x y dxdy C
Ω

=

= − +∑∫  (65) 

For a smooth non-textured image, a common choice is to use Gaussian distributions. It means that the 

conditional probability with respect to hi for a vector valued image pixel I is 
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p x y e
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I µ Σ I µ
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where µi and Σi are the mean vector and covariance matrix associated to the segment Ωi of the vector 
valued image I(x,y). Disregarding constant terms, the above energy function can be rewritten as a 
general form 

 ( )
1 2

1 2F C e dxdy e dxdy C
Ω Ω

= + +∫ ∫  (67) 

where the objective function for each segment is given by 

 ( ) ( )( ) ( )( )1, log , ,
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The solution of the Euler-Lagrange equations obtained from the energy function gives expressions of µi 

and Σi  
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where the segment function χi is identical to Chan-Vese model. The evolution equation is 
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 ( ) { }1 2divv e e
t ε
φ φδ φ

φ

⎡ ⎤⎛ ⎞∂ ∇
= − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∇⎢ ⎥⎝ ⎠⎣ ⎦

. (71) 

This active contour model can be extended to a multi-phase model using the same set of segment 
functions used for Chan-Vese model. 
 
In Figure 24 and Figure 25, we show the results of Rousson-Deriche model applied into the RGB image 
in Figure 7 (258x253x3). We placed an initial contour manually in Figure 24 and used distributed seeds 
in Figure 25. In both cases, Rousson-Deriche model find the boundary of the object in a textured 
background. Rousson-Deriche model is the only active contour model, which finds the boundary of the 
object in this image. The barrel of the tank is not detected because it is made of different material; the 
barrel is made of black plastic, but other parts of the tank is made of metal with camouflage paint. The 
image is divided into two segments; the object and the background. 
 

Initial Contours Deformed contour Final segmentation

 

Figure 24 Rousson-Deriche model applied into Figure 7 (258x253x3). (Left) An initial contour is placed 

manually at the exterior of the object. (Middle) The contour moves towards the object and stops on the 

boundary of the object. (Right) The image is divided into two sets; the object and the background. 
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Initial Contours Deformed contour Final segmentation

 

Figure 25 Rousson-Deriche model applied into Figure 7 (258x253x3). (Left) 9 initial contours are placed 

using distributed seeds. (Middle) The contours move towards the object and stops on the boundary of the 

object. (Right) The image is divided into two sets; the object and the background. 
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Discussion 
We have implemented two region-based active contour models: Chan-Vese active contour model based 
on Mumford-Shah segmentation funtion and Rousson-Deriche active contour model based on the 
maximization of a posteriori segmentation probability. After numerical experiments, these two region-
based active contour models show a few advantages compared to the boundary-based active contour 
models; (a) region-based active contours use the global energy minimization for stopping function 
instead of an edge function based on the local image gradient. According to visual inspection, the global 
minimization often shows more reasonable segmentation result than local minimization. Not using a 
local edge function also gives more robustness to noise. (b) A random number of initial contours can be 
placed at random places in the image. Increasing the number of initial contours increases the 
convergence speed, and distributed seeds provide a means for an automatic segmentation tool. (c) The 
multi-phase segmentation makes it possible to divide an image into more than two segments. 
 
Although the energy functions of two models to be minimized are similar, they calculate different 
metrics. Chan-Vese model measures a squared Euclidean distance between the given image function I 
and the estimated mean ci of the corresponding region. Rousson-Deriche model measures the 
Mahalanobis distance, if we ignore the log term. Another difference between two models is Chan-Vese 
model takes the average of energy functions measured at each frame, while Rousson-Deriche model fits 
a multi-dimensional Gaussian distribution. Chan-Vese model can be interpreted as a particular case of 
Rousson-Deriche model, where the covariance matrix is fixed as an identity matrix. According to visual 
inspection, this multi-dimensional approach often shows more reasonable segmentation result. 
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Prime contours 
Hyperspectral images often contain more than hundred frames. Features which discriminate particular 
object do not necessarily exist in all frames. For instance, a hot spot of a car engine is a discriminating 
feature in infrared bands, but almost invisible in visible bands. The color of flowers is a discriminating 
feature in visible bands, but is not a discriminating feature in infrared bands. 
Most active contour models applicable to vector-valued images are extended to vector-image 
segmentation after being originally designed for two-dimensional image segmentation, i.e. Chan-Vese 
active contour model. These active contours often calculate the energy function by taking the sum of 
energy functions from each frame. The energy function can be high in some frames but can be low or 
even zero in other frames. Summing up these energies along the dimension of frames will smooth the 
discriminating feature, i.e. weakening the boundary of objects. 
 
In Figure 26, we show a synthetic RGB image (256x256x3) for this kind of case. The background has 
intensity {180, 180, 180}. Hexagon and circle are visible in all three bands with intensity {130, 60, 90}. 
There are two pentagons with intensity {130, 60, 30} placed inside of the hexagon and circle. These 
pentagons are invisible in the red and green channels because they have the same intensity as the 
hexagon and circle. Information useful to extract these pentagons is available only in the blue channel. 
Our objective is to segment the two pentagons from the hexagon and circle. In Figure 27, we show the 
result of the 4-phase Chan-Vese model applied into this vector-valued image. Two pentagons are not 
segmented because the energy function from the blue channel is smoothed by averaging. 
 

 

Figure 26 Four objects are placed in a synthetic RGB image (256x256x3). Only two objects, hexagon and 

circle, are visible in red and green channels. Two pentagons are visible inside of the hexagon and circle only 

in the blue channel. 



 
 
 

40

 
Initial Contours Deformed contour Final segmentation

 

Figure 27 4-phase (2 level set functions) Chan-Vese model applied into Figure 26. (Left) Two sets of contours 

are initiated using distributed seeds. (Middle) Both contours cannot detect the pentagons. (Right) The image 

is divided into two segments only; {hexagon, circle} and background. 

 
 
 
 
A pseudo multispectral image is generated from an RGB image for this experiment. The first three 
frames are extracted from an RGB image. The fourth frame is generated by Gaussian blurring with 
radius 1.0 and adding 1% uniform noise to the gray image (average of the first three channels). The fifth 
frame is generated by Gaussian blurring with radius 2.0 and adding 3% uniform noise to the blue 
channel. The sixth frame is generated by Gaussian blurring 2.0 and adding 3% uniform noise to the red 
channel. The seventh frame is generated by Gaussian blurring with radius 4.0 and adding 4% uniform 
noise to the gray image. The image pixels around the engine hood in the sixth and seventh frame are 
20% lightened to make pseudo hot spot. Our objective is to segment the hot spot from the car. Figure 28 
shows this pseudo multispectral image with seven bands. In Figure 29, we show the result of 2-phase 
Chan-Vese model applied into the image in Figure 28. The hot spot is not segmented because the 
averaging operation smooth energy functions from sixth and seventh frame.  
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Figure 28 A pseudo multispectral image (258x253x7). (Top) The original RGB image. (Bottom) Images 

modified from the original RGB image. 
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Figure 29 2-phase Chan-Vese model applied into the image in Figure 28 (7 bands). Hot spot is not segmented. 

 
Considering the properties of hyperspectral images, if there is a discriminating feature in band A, the 
same discriminating feature may exist or be strong in the neighbor bands of band A. For active contours, 
the energy function will be kept strong enough if we take the average only within the neighbor bands 
instead of the whole bands. Suppose a hyperspectral image is given. We divide the given hyperspectral 
image into a group of multispectral images with lower number of bands, based on the correlation 
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between frames, i.e. {a visible band image, a SWIR band image, a MWIR band image}. A set of active 
contours – the prime contours - are evolved from each of the multispectral images. Final segmentation is 
achieved from these prime contours using the same means of multi-phase active contours. Two extreme 
results are possible. First, we will have an over-segmented image if the prime contours are highly 
uncorrelated. Second, the result will be identical to the result using other active contour models if the 
prime contours are completely correlated. However, most of cases will be between these two extreme 
results. 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 30, we show the result of the proposed method applied into the same data used in Figure 27. 
Here, we assume that these three channels belong to different groups, so apply 4-phase Chan-Vese 
model separately into these three channels. The results from red and green channel are identical because 
they are completely correlated, but the result from blue channel show different segmentation. The final 
segmented image is represented by the union of three prime contours. The image is divided into three 
segments; {two pentagons, hexagon and circle, and background}. 
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Initial Contours Initial Contours Initial Contours

 
Deformed contour Deformed contour Deformed contour

 
Final segmentation

 

Figure 30 Proposed method applied into Figure 26 (Top) 4-phase Chan-Vese model applied separately into 

three channels. Initial contours are placed using distributed seeds in all three cases. (Middle) Only hexagon 

and circle are segmented in red and green channels, but two pentagons as well as hexagon and circle are 

segmented in the blue channel. (Bottom) The final result. The image is divided into three segments; {Two 

pentagons}, {hexagon, circle}, and the background. 

 
In Figure 31, we show the result of proposed method applied into the image in Figure 28. First, we 
divide the seven frames into three groups [{1,2,3}{4,5},{6,7}]. Then, we apply 2-phase Chan-Vese 
model separately into these three groups. 36 initial contours are placed using distributed seeds for all 
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three groups. From the first two groups, active contours find only the silhouette of the car, but they find 
the hot spot in the third group. We represent the final segmented image by taking the union of these 
three images. 
 

Initial Contours Initial Contours Initial Contours

 
Deformed contour Deformed contour Deformed contour

 

 

Figure 31 Proposed method applied into Figure 28 (7 bands). (Top) 2-phase Chan-Vese model applied 

separately into three groups. 36 initial contours are placed using distributed seeds in all three groups. 

(Middle) Active contours find only the silhouette of the car in the first two groups, but find the hot spot in 

the third group. (Bottom) The final result. The image is divided into eight segments (almost four segments 

by visual inspection) including the hot spot and the silhouette of the car. 
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How to define the number of group and which group each frame belongs to should be studied. As we 
increase the number of groups, we also increase the number of level set functions to calculate. The 
computational cost is as high as multi-phase active contours with one more dimension. 
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Conclusion and future works 
We have done an investigation of active contours as an image segmentation method particularly for 
multispectral images. A research review on published methods has been performed with numerical 
experiments. Experimental results using selective models on various synthetic and real images are 
shown in this report. The segmented results have been evaluated using visual inspection. 
 
The integration of the level set theory and the mean curvature motion into active contours allowed for 
automatic change of topology, such as merging and breaking, and the calculations are made on a fixed 
rectangular grid. The automatic topological changes make it possible to detect multiple objects, which is 
not possible for classical active contours. However, the level set function increased the dimension of 
data to update resulting in higher computational cost. 
 
Depending on techniques used as stopping functions, we divided active contours into two groups; (a) 
geometry- or boundary-based models and (b) statistics- or region-based models. The boundary-based 
active contour models use the image gradient to stop the contour evolution on the desired boundary. 
Two boundary-based active contour models have been reviewed; geometric active contours and 
geodesic active contours. Although geometric active contours were not designed for vector-valued 
images, we could apply them into three-channel images using the average of the image gradient. The 
color snakes model was implemented as a particular example of geodesic active contours. The 
boundary-based active contours encounter a few limitations; (a) since the stopping function use the 
image gradient, boundary-based active contours make use of only local information like the classical 
snakes, and are sensitive to local minima and noise. (b) Due to the fact that the boundary-based active 
contours evolve an initial contour towards one direction, constrained by the curvature effect, the initial 
contour should be placed completely exterior or interior of the boundary of the object. 
 
The region-based active contour models do not use the image gradient. Two region-based active contour 
models have been reviewed in this report; Chan-Vese model and Rousson-Deriche model. The region-
based active contours show a few advantages compared to boundary-based active contours; (a) since 
region-based active contours do not need an edge function, objects without edge lines can be detected. 
Also, region-based active contours are more robust with respect to noise. (b) region-based stopping 
function is looking for the global (within the corresponding region) minimum instead of a local 
minimum. (c) The initial contour can be placed at anywhere in the image. The convergence speed can be 
improved by increasing the number of initial contours. (d) Multiple contours can be evolved 
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simultaneously providing multiple segments. According to visual inspection,  region-based active 
contours often produce more reasonable segmentation. 
Chan-Vese model uses Mumford-Shah segmentation techniques for the stopping function. Chan-Vese 
model represents the segmented image as a combination of constant vectors. Because of its simple 
structure, the contour evolution of Chan-Vese model is usually more than 5 times faster than Rousson-
Deriche model, while Chan-Vese model is less applicable to complex images, particularly textured 
images. Rousson-Deriche model uses more general formulation obtained from the maximization of the a 
posteriori segmentation probability.  Rousson-Deriche model represents the segmented image as a 
combination of multi-dimensional Gaussian distributions with adaptive mean vectors and covariance 
matrices. The contour evolution of Rousson-Deriche model is slower than Chan-Vese model, while 
Rousson-Deriche model is relatively more applicable to complex images because of the multi-
dimensional (complex) structure. 
 
We did an experiment of extracting a stack of prime active contours, which are evolved from a group of 
frames instead of the whole frames, in order to avoid the smoothing effect. This experiment showed that 
more discriminating features can be extracted from hyperspectral images. 
 
After literature survey and numerical experiments, we have concluded that region-based active contours 
are more practical approaches than boundary-based active contours as a multispectral image 
segmentation tool. Active contours using multi-dimensional statistics, i.e. multi-dimensional histogram, 
are planed to study. We expect the multi-dimensional statistics to provide better segmentation ability 
with slightly higher computational cost. A supervised active contour model using histogram matching is 
also planned to study. 
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